Here is an excellent, short round-up of both the science of the new technique to produce "Induced pluripotent stem cells (IPSC's), and the ethics.
If you hit the link and read the whole article (highly recommended; the excerpt is about 40% ofthe text), you may wish to leave a comment.
MercatorNet - Stem cell breakthrough: ethical science is good science
Here is what happens. The cells, called induced pluripotent stem cells (iPSCs), were created by using a retrovirus to introduce four genes into ordinary skin cells. After a while, the skin cells revert to a pluripotent state, meaning that they can change into nearly any type of cell in the body. At the moment there are some drawbacks, as the cells can turn cancerous, but scientists are confident that this will swiftly be overcome. Dozens of research teams around the world are already beavering away.
Furthermore, the new technique appears to be simpler, more efficient and cheaper. "People didn’t know it would be this easy," Dr Thomson says. "Thousands of labs in the United States can do this, basically tomorrow."
Which raises the question of why they didn't think of it yesterday. The idea has been around for a long time. Back in May 2005, a white paper from the US President's Council on Bioethics mentioned it as one of the four major alternatives to the use of embryonic stem cells, although it concluded that "it is much too early to know whether this will succeed".
Perhaps one reason why Yamanaka succeeded is that he was thinking outside the square. He didn't plod along behind Ian Wilmut, Rudi Jaenisch, George Daley, Irving Weissman, Austin Smith, Alan Trounson and the other luminaries of stem cell research. Was it because he began his career as an orthopaedic surgeon? Was it because he seems to have greater sensitivity to ethical and social concerns? "Neither [human] eggs nor embryos are necessary. I've never worked with either," he commented earlier this year. The boldness of Yamanaka's approach is instructive. Over five years, his team compiled a list of 24 factors that seemed to help stem cells stay flexible. But which ones? Toiling 12 to 14 hours a day in his lab, using brute force, Yamanaka found them. "He gambled everything on the key factors being included within his pool of 24 candidates," said Nature. And he won.
>>>>>>>>>>
Unfortunately, the good news still hasn't done away with fundamental ethical questions; it has merely bypassed them. Researchers are not budging from their insistence that research on embryos and cloning is still absolutely necessary. The use of embryos is the "gold standard" for the production of stem cells, commented Shoukhrat Mitalapov, the researcher who became the first to clone a primate successfully last week. The human embryo is still regarded as a mere research tool by many scientists. Even Yamanaka insists that embryonic stem cell research should continue.
Furthermore, this new stage in stem cell research opens the door to the transhumanist dreams of manufacturing "better humans". Yamanaka himself has fretted over the potential for a new route to cloned children. "Our technology, however, create a new ethical concerns. It might be possible to generate sperm and eggs from skin cells, via iPS cells," he says. Lesbians could create sperm; and gays could create eggs. With the ability to create gametes, genetic engineering will become possible, as well. IVF clinics will be able to delete genes for hereditary diseases from embryos but also insert genes for greater athletic ability or a higher IQ. Pluripotent cells can lead not only to tailor-made therapies, but to tailor-made children.
Comments